
Externer DNS

Technologien und Herausforderungen

Amanox Solutions AG Speichergasse 39 CH-3008 Bern

Wieso brauchen wir externen DNS

Alle Internetservices nutzen DNS

- E-Mail
- Geschäftskritische Business Applikationen
- Web (HTTP / HTTPS)
- VoIP / Calloberation
- Cloud Computing

Ohne DNS läuft das Internet nicht!

 Zunehmend wichtiger bei der Einführung und Migration von IPv6

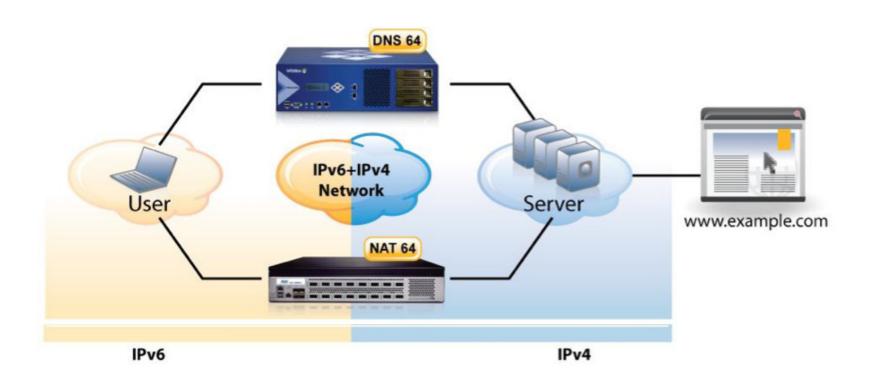
Agenda

DNS64 und NAT64

- Möglicher Use Case
- Funktionen und Eigenschaften
- Aktivierung und Implementierung

DNSSEC

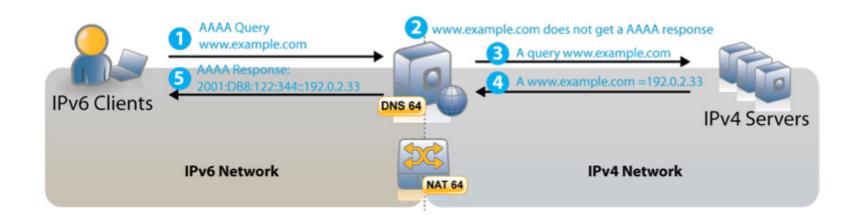
- Entwicklung und Geschichte
- Übersicht der wichtigsten Funktionen und Eigenschaften
- Aktivierung und Implementierung


DNS64 und NAT64

Funktionen und Eigenschaften

Amanox Solutions AG Speichergasse 39 CH-3008 Bern

DNS64 / NAT64 Szenario



- Clients sind nur über das im interne Netzwerk (LAN) sind nur über das IPv6 Protokoll erreichbar.
- Clients nutzen aber Dienste im Internet, die nur über eine IPv4 Verbindung aufgerufen werden können.

Funktionsweise DNS64 / NAT64

- DNS64 stellt sicher, dass **AAAA Queries** in **A Queries** konvertiert werden.
- Aufgelöste IPv4 Adresse wird durch die IPv6 Adresse des NAT64 Gateways ersetzt.
- Datenverkehr der IPv6 Client wird anschliessend über den NAT64 Gateway weitergeleitet.

DNS64 / NAT64 Use Case

Carrier/ISP/Mobile

- Zuwenig IPv4 Adressen verhindern den Rollout von neuen Services
 - WiFi / 3G / 4G Networks
 - Smart Phones
 - Consumer Broadband
- Notwendig um IPv6 only Customers mit "legacy" IPv4 Kunden zu verbinden, die noch kein IPv6 besitzen

Enterprise IT

- Wird in den meisten Enterprise IT Umgebungen nicht benötigt
- Wird wichtiger, wenn der IPv6 Rollout fortgeschritten ist.
 - Kunden möchten IPv4 auf den ihrer Infrastruktur deaktivieren
 - Einige "legacy" Systeme unterstützen nicht IPv6
 - Kunden können DNS64 / NAT64 nutzen um diese IPv4 Inseln miteinander zu verbinden

DNSSEC

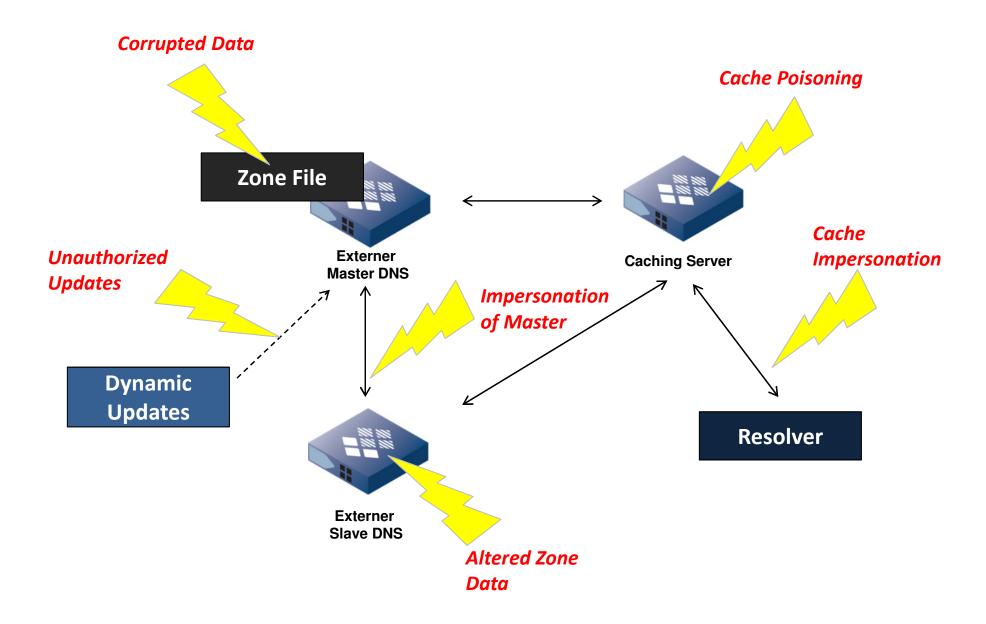
Funktionen und Eigenschaften

Amanox Solutions AG Speichergasse 39 CH-3008 Bern

Entwicklung von DNSSEC

1983: Erfindung von DNS

2005: Überarbeite Version von RFC 2535 veröffentlicht RFC 4033, RFC 4034, RFC 4035

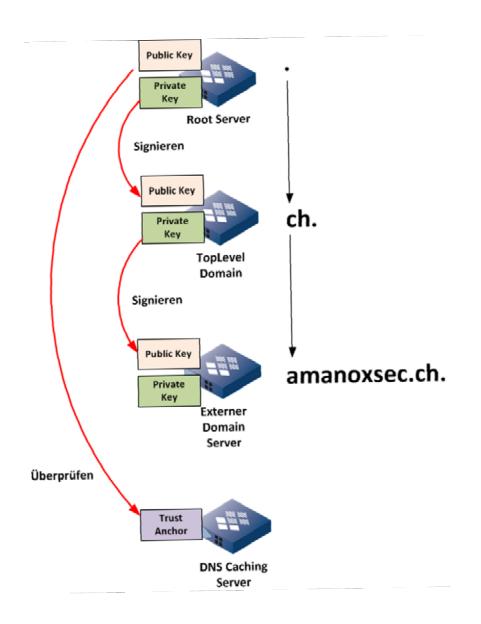

2005: Schweden (.se) aktiviert DNSSEC

2010: .ch aktiviert DNSSEC (1.Februar)

2010: Publikation von root zone trust anchors (15.Juli)

Wieso brauche ich DNSSEC?

Wieso brauche ich DNSSEC?



Gewährleistung von Authentizität und Datenintegrität!

- DNS Teilnehmer kann Zonendaten auf Echtheit überprüfen und sicherstellen, dass die Daten unterwegs nicht verändert wurden
- Schützt DNS vor Man-in-the-middle oder Cache Poisoning Attacken
- Zukünftige Einsatzgebiete:
 - DNS als Vertrauensquelle für Zertifikate (Kombination mit SSL)

DNSSEC Chain of Trust

- DNS nutzt eine verteilte hierarchische Datenbank
- DNSSEC Chain of Trust stellt das Signieren und die die Überprüfung der DNSSEC Keys sicher.
- Root Server und Top Level Domains müssen DNSSEC unterstützten und entsprechend signiert sein.

Vorgehensweise für die Einführung von DNSSEC

Asymmetrisches Kryptosystem

- 1. Generierung von Schlüsselpaar
- Veröffentlichung von Public Key (z.B. bei Switch)
- 3. Beglaubigung von Public Key (Chain of Trust)
- 4. Signieren von Zonendaten mit Private Key
- 5. Überprüfen der Zonendaten mit beglaubigtem Public Key (andere DNS Server)

Schlüsselmanagement

Key signing key (KSK)
 Lange Gültigkeit / Grosser Key
 Rollover durch doppeltes signieren von ZSK

Zone signing key (ZSK)
 Kurze Gültigkeit / Kleiner Key
 Rollover durch vorgängige Veröffentlichung

DNSSEC Ressource Records

• DS

Delegation Signer (Signierter public Key bei Parent Domain)

DNSKEY

Public Key der Domain

RRSIG

Pro Ressource Record wird ein neuer RRSIG erstellt (=> doppelt so grosse Zone)

NSEC

- Kennzeichnet einen nicht existierenden Ressource Record. (NX Record)
- Pro Ressource Record im Zonenfile wird ein NSEC Record erstellt (=> doppelt so grosse Zone)

NSEC3 / SNEC3PARAM

Sichere Variante von NSEC. Verhindert Brute Force Zonentransfers

DNSSEC Ressource Records

dig ch. @a.root-servers.net. DS

ch. 86400 IN **DS 14268** 7

5A1B2BCBD3D5E1D451F247537254E149E1C64CE208699E8FE9380E0D C2FF6632

dig ch. dnskey +multi

ch. 86184 IN **DNSKEY** 257 3 7

AwEAAdAqpy19+3Mw9xSroJnYLhTugUBluCVZ0fDdpz/hPYv9QtXebXICUzaKB3Z/63QCNn8YorPlprYv2YwOYCT7R4f5lM1qLntQeuS3xu24+caDN5F0pUxl77FQMWUPY7zLz

LyZcunp6Z+XJk+DgdJ84LmD69iy2TYvf192dt5GJ5/X; key id = 14268

dig amanoxsec.ch@a.nic.ch. DS

amanoxsec.ch. 3600 IN **DS 53166** 7 2

2E5BA5F00A2466D1FF03BBF7EE75415C68A8152EBE5D7659B629E5B5 70893516

dig amanoxsec.ch. dnskey +multi

amanoxsec.ch. 84282 IN **DNSKEY** 257 3

AwEAAZxjYyOX3AlsG3sGyQZObDZIbn67AZjv8Lk8FWjdzWsciz8RzLigyM5IUyYG5kdR E977zUcpPFbjWLN28T9jbtweqlWvnhFweTzmbdVDvwGxvUzCbYgSVbdbEudwlAbH MoGZOewo3WBzdzyOZb9JCUS7jUoK1zylTZ3zTxt5GbmtddTFG5VZ2LQPNj/i4oPhwv Rob3ssVYT/OP95PFjevCnSjfNvY59tsBjgSjtwb0VRghmztlRr2kpjJfT1CdF4soTJd4NK/ 1WtkKZqJ0O8Gs0jl0rH0UJBecNim LnXe0ndqN5U8urUYaCzr6jmkxgBF5M/+AvLPpZM

QtdpRUF1bEc= ; key ig = **53166**

amanoxsec.ch.

ch.

Aktivierung DNSSEC

Manuelles Deployment und Management

Generierendes KSK (Option -f KSK)

\$dnssec-keygen -f KSK -n ZONE -a DSA -b 1024 sec.example.net Ksec.example.net.+003+16004

Generiere ZSK

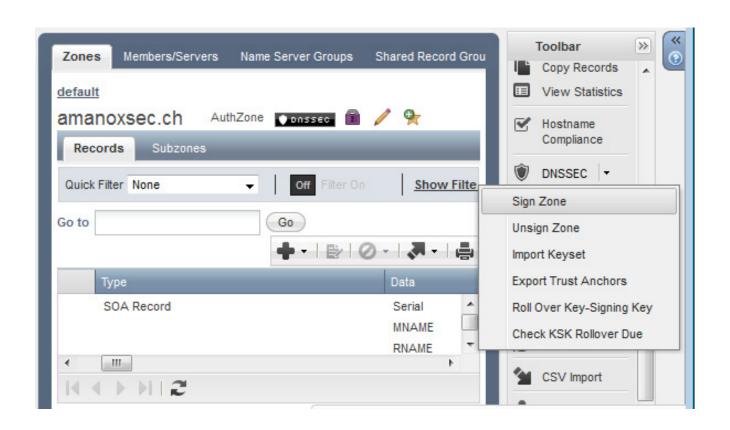
\$dnssec-keygen -n ZONE -a RSASHA1 -b 512 sec.example.net Ksec.example.net.+005+57764

- Einfügen der Keys in die Zone
- Erhöhen der Seriennummer!
- Signieren + Neuladen

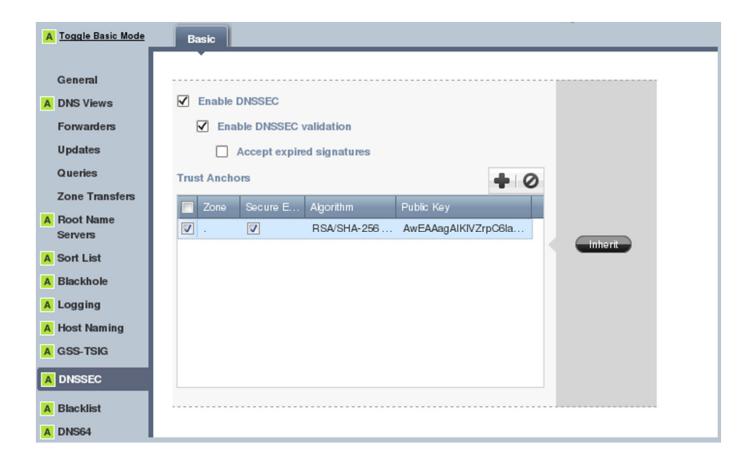
\$dnssec-signzone -o sec.example.net zone.db zone.db.signed \$rndc reload sec.example.net

- KSK in der trusted-key Section des Resolver eintragen!
- Einfügen eines Verweises auf den KSK in der Parentzone dnssec-signzone
- Signieren der Parent Zone \$dnssec-signzone -g -o example.net zone.db zone.db.signed
- Periodisches Rollover! Und so weiter und sofort...

Übersicht DDI Lösungen


Integrated Database, Single Point of Management

Aktivierung DNSSEC mit Infoblox


Signieren einer DNS Zone

Aktivierung DNSSEC mit Infoblox

Aktivieren von DNSSEC Validierung

Tools, Tipps & Tricks

Dig mit +dnssec Option
 Setzt das DNSSEC OK bit (DO)

Drill

Vergleichbar mit dig, jedoch speziell für DNSSEC konzipiert. Sehr hilfreich für Nachvollziehbarkeit der Chain of Trust und Debugging

- http://dnsviz.net/d/amanoxsec.ch/dnssec/
 Grafische Aufbereitung der DNSSEC Authentication Chain
- http://dnssec-debugger.verisignlabs.com/amanoxsec.ch
 Analyse von DNSSEC Problemen
- https://addons.mozilla.org/en-US/firefox/addon/dnssec-validator/ DNSSEC Validator: Plugin für Firefox, welches URL verifiziert